
Presented by

Introduction to SIMD
(Theory Part)



Demo



Overview

● What is SIMD?

● How does SIMD work on a hardware level?

● How does SIMD make programs run faster?

● How to write SIMD?



Why should I learn about SIMD?

● Many areas of game programming are performance sensitive

● Tool in your toolbox

● Internship / job interview



Single instruction, multiple data (SIMD)
A way to utilize the CPU hardware to process multiple values simultaneously for better 
performance.



Areas of usage
Performance sensitive applications that 
process data in batches in a way that can 
be parallelized.

● Multimedia

● 3D Graphics

● Math / Physics



Vector/vectorization in the context of SIMD
Think of a SIMD vector as a fixed-size array.

No relation to:

● std::vector

● Mathematical vector

● Vector2, Vector3 0.1f -137.6f 5.44f 9.0f

__m128

4 floats



Lanes
The number of elements in these vectors is not fixed. The proper term to use is lanes.

1032592701477 3789320985356 64-bit integer x 2

32238 79324 12093 56398 32-bit integer x 4

__m128i

1 7 3 4 6 7 2 1 16-bit integer x 8



Scalar vs. Vector

a1 a2 a3 a4

__m128 a;

__m128 b;

a

float a;

float b;

b

a + b

b1 b2 b3 b4

a1 + b1 a2 + b2 a3 + b3 a4 + b4

+

=



CPU Architecture Overview

CPUInstructions



What is an instruction?

Source Code:
a = a * b;

Compiler

Assembly Code:
mul eax, ebx

Machine Code:
11110111 11100011

Assembler

Instruction



Instruction Set Architecture (ISA)
● x86 - Desktop, PS5, Xbox

○ Intel

○ AMD

● ARM - Mobile, Switch

○ Apple Silicon

○ Qualcomm Snapdragon



Instruction set extensions

SIMD instructions aren’t generally part of the base instruction set. Instead, they come in the 
form of extensions.

● x86

○ SSE

○ AVX

● ARM 

○ NEON



Anatomy of an x86 instruction

add eax, ebx

Mnemonic Destination Source



Instruction cycle

Fetch Decode Execute



Fetch
Retrieve the next instruction(s) from 
memory.

Fetch Decode Execute

Instruction Cache



Decode
Interpret the instruction, breaking it down 
into specific operations.

Fetch Decode Execute

Decoders



Micro-operations (micro-ops / μops)

https://uops.info/html-instr/IDIV_R32.html

https://uops.info/html-instr/IDIV_R32.html


Execute
Carry out the operations specified by the 
instruction.

Fetch Decode Execute

Execution Engine



Execute
● Registers - circuits that temporarily 

store inputs and outputs

● Execution units - circuits that 
perform operations on data in 
registers

Fetch Decode Execute



Registers

A register is a super fast storage location 
inside the CPU. It’s like a workspace for 
the CPU that temporarily hold data for 
processing. add eax, ebx

Register Register



Register renaming

On Intel 8086 logical registers mapped 
directly to physical registers.

Modern CPUs have hundreds of physical 
registers and use register renaming.

add eax, ebx

Logical register 
name

Logical register 
name



Register names

Different logical register names can 
be used to access different parts of 
a register.



Execution units

Specialized components for executing 
different types of operations.

● Arithmetic logic unit (ALU)
● Address generation unit (AGU)
● Load-store unit (LSU)
● Branch execution unit (BEU)



Execution units



Where is the SIMD hardware?

��

��

��

��



Floating point path = SIMD path
Old Intel CPUs used to have a floating 
point coprocessor for which they 
designed an extension called x87.

Modern compilers will generate SSE 
instructions for scalar floating point 
operations*, though x87 is still 
supported.

SIMD hardware

*I’m sure there are exceptions



Wide hardware
While components that handle scalar 
integer instructions are typically 64-bit 
wide, hardware that handles SIMD 
instructions is 256-bit (or even 512-bit) 
wide on modern CPUs.

SIMD hardware



CPU Architecture Overview

CPUInstructions



Performance

1. Number of instructions
a. Algorithmic complexity
b. Waste

2. Speed at which instructions go 
through the CPU
a. Data locality
b. Multi-threading
c. SIMD

CPUInstructions



How does SIMD make my 
code faster?
● Faster execution - do more 

useful work at the same time by 
utilizing vector hardware.

● Reduced cost of decoding - only 
one instruction to decode instead 
of multiple.

● Maximizes cache bandwidth - 
load more data from memory per 
cycle.



Auto-vectorization

If certain criteria are met, a compiler 
may be able to vectorize your code.

Free optimization? Yes, but compilers 
usually need some help to be able to 
auto-vectorize.



Auto-vectorization
1. Loop vectorizer unrolls loops and 

writes them as SIMD
2. Block vectorizer (a.k.a. SLP) merges 

multiple scalars into a vector in a 
block of code

https://www.intel.com/content/dam/devel
op/external/us/en/documents/31848-com
pilerautovectorizationguide.pdf

Normal loop:

for (int i = 0; i < 1024; i++)
{

a[i] = i;
}

Unrolled loop:

for (int i = 0; i < 256; i += 4)
{

a[i] = i;
a[i + 1] = i + 1;
a[i + 2] = i + 2;
a[i + 3] = i + 3;

}

https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf


Back to demo



Learn More

Articles:
http://const.me/articles/simd/simd.pdf
https://mcyoung.xyz/2023/11/27/simd-base64/

Talks:
https://gdcvault.com/play/1022248/SIMD-at-Insomniac-Games-How

Courses:
https://www.computerenhance.com/

Books:
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-e
dition/

http://const.me/articles/simd/simd.pdf
https://mcyoung.xyz/2023/11/27/simd-base64/
https://gdcvault.com/play/1022248/SIMD-at-Insomniac-Games-How
https://www.computerenhance.com/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/


Glossary
ARM

Auto-vectorization

AVX

CPU backend

CPU frontend

Execution engine

Execution unit

Fetch-Decode-Execute

Instruction set architecture

Microarchitecture

Register

Register renaming

SIMD

SSE

Vector

x86



Presented by

Thanks for listening!

Please fill out the feedback form!


