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Overview

e Whatis SIMD?
e How does SIMD work on a hardware level?
e How does SIMD make programs run faster?

e How to write SIMD?



Why should | learn about SIMD?

e Many areas of game programming are performance sensitive
e Toolin your toolbox

e Internship/job interview



Single instruetion, multiple data (SIMD)

A way to utilize the CPU hardware to process multiple values simultaneously for better
performance.




Areas of usage

Performance sensitive applications that

process data in batches in a way that can SlmdjSOn Speed (C++)

be parallelized.

twitter.json: 2.4 GB/s on 3.4 GHz Skylake

e Multimedia
e 3D Graphics
e Math / Physics

speed
simdjson (C++) 2.4 GB/s
RapidJSON (C++) 0.65GB/s
Jackson (Java) 0.35GB/s
readLines C++ 1.5 GB/s
disk 2.2GB/s




Vector/vectorization in the context of SIMD

Think of a SIMD vector as a fixed-size array.
No relation to:

e std:vector

e Mathematical vector __m128

e Vector2, Vector3 -137.6f | 5.44f 4 floats



lanes

The number of elements in these vectors is not fixed. The proper term to use is lanes.

__m128i
n 16-bit integer x 8
32-bitinteger x 4
64-bit integer x 2




Sealar vs. Vector

float a; __m1l28 a;
=
T float b; __m128 b;

=
-
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CPU Architecture Overview
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What is an instruction?

Source Code:
l Compiler
Assembly Code:
mul eax, ebx
l Assembler
Machine Code:
110111 1110001




Ingtruction Set Architecture (ISA)

x86 - Desktop, PS5, Xbox
o Intel
o AMD

ARM - Mobile, Switch
o Apple Silicon

o Qualcomm Snapdragon

Application
Algorithm
Programming Language Software
Assembly Language
Machine Code

Instruction Set Architecture

Micro Architecture

Logic Gates, Registers

IC's And Transistors Hardware

Electronics And Physics




Instruction set extensions

SIMD instructions aren’t generally part of the base instruction set. Instead, they come in the
form of extensions.

o x86

o SSE

o AVX
e ARM

o NEON



Anatomy of an x86 instruetion

add eax, ebx
/I 1 N\
RS



Instruetion cyele



Fetch

Branch Prediction
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. 4 instructions/cycle gk et 9 macro-ops/cycle
Instruction Cache

6 ops dispatched
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Decode

Interpret the instruction, breaking it down

into specific operations.

Decodere¢ /

o-o-

Branch Prediction

!

Op Cache

4 instructions/cycle

9 macro-ops/cycle
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Micro-operations (micro-ops / pops)

=
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[:] Instructions [:] Micro-operations



https://uops.info/html-instr/IDIV_R32.html

Execute

Carry out the operations specified by the
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Execute

ElER Branch Prediction
e Registers - circuits that temporarily alv ]
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Registers

A register is a super fast storage location
inside the CPU. It's like a workspace for
the CPU that temporarily hold data for
processing.

add eax, ebx



Register renaming

On Intel 8086 logical registers mapped
directly to physical registers.

Modern CPUs have hundreds of physical add eax, be

registers and use register renaming. , \

logical register logical register
name name



Register names

Different logical register names can
be used to access different parts of
a register.

| Jax.



Execution units

Specialized components for executing
different types of operations.

Arithmetic logic unit (ALU)
Address generation unit (AGU)
Load-store unit (LSU)

Branch execution unit (BEU)




Execution units

Integer Physical Register File
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Where is the SIMD hardware?



Floating point path = SIMD path

Old Intel CPUs used to have a floating
point coprocessor for which they
designed an extension called x87.

Modern compilers will generate SSE
instructions for scalar floating point
operations*, though x87 is still
supported.
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Wide hardware

While components that handle scalar
integer instructions are typically 64-bit
wide, hardware that handles SIMD
instructions is 256-bit (or even 512-bit)
wide on modern CPUs.
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CPU Architecture Overview

Instructions

32K I-Cache < Branch Prediction
8 way
Decode Spicache

Micro-op Queue

4 instructions/cycle 9 macro-ops/cycle
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Performance

1. Number of instructions

a. Algorithmic complexity

b. Waste

. . Instructions
2. Speed at which instructions go
through the CPU

a. Data locality

b. Multi-threading

c. SIMD




How does SIMD make my

code faster? = =

Decode Op Cache

e F[aster execution - do more
useful. Work at the Sa me time by 4 instructions/cycle e 9 macro-ops/cycle
utilizing vector hardware.

v v
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Auto-vectorization

If certain criteria are met, a compiler
may be able to vectorize your code.

Free optimization? Yes, but compilers
usually need some help to be able to
auto-vectorize.

Compilers

. Principles, Techniques, and Tools

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

| 878 234 o7 wes 2o | SESRTEETN




Auto-vectorization

1. Loop vectorizer unrolls loops and
writes them as SIMD

2. Block vectorizer (a.k.a. SLP) merges
multiple scalars into a vector in a

block of code

Normal loop:

(
{

}

i=0;i<1024;i++)

ali] =i

Unrolled loop:

(

i=0;i<2b6;i+=4)
ali] =1;
ali+ 1] =i+ 1;
ali+2]=i+2;
ali+ 3] =i+ 3;


https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
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Llearn More

Articles:

Talks:

Courses:

Books:


http://const.me/articles/simd/simd.pdf
https://mcyoung.xyz/2023/11/27/simd-base64/
https://gdcvault.com/play/1022248/SIMD-at-Insomniac-Games-How
https://www.computerenhance.com/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/

Glossary

ALY Instruction set architecture
Auto-vectorization Microarchitecture

AV X Register

CPU backend Register renaming

CPU frontend SIMD

Execution engine SSE

Execution unit Vector

Fetch-Decode-Execute x86
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Thanks for listening!

Please fill out the feedback form!
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