.

A

Introduction to SIMD

(Theory Part)

Noteanoere/™U

.

A

Demo

NoTtanperg/MU

Overview

e Whatis SIMD?
e How does SIMD work on a hardware level?
e How does SIMD make programs run faster?

e How to write SIMD?

Why should | learn about SIMD?

e Many areas of game programming are performance sensitive
e Toolin your toolbox

e Internship/job interview

Single instruetion, multiple data (SIMD)

A way to utilize the CPU hardware to process multiple values simultaneously for better
performance.

Areas of usage

Performance sensitive applications that

process data in batches in a way that can SlmdjSOn Speed (C++)

be parallelized.

twitter.json: 2.4 GB/s on 3.4 GHz Skylake

e Multimedia
e 3D Graphics
e Math / Physics

speed
simdjson (C++) 2.4 GB/s
RapidJSON (C++) 0.65GB/s
Jackson (Java) 0.35GB/s
readLines C++ 1.5 GB/s
disk 2.2GB/s

Vector/vectorization in the context of SIMD

Think of a SIMD vector as a fixed-size array.
No relation to:

e std:vector

e Mathematical vector __m128

e Vector2, Vector3 -137.6f | 5.44f 4 floats

lanes

The number of elements in these vectors is not fixed. The proper term to use is lanes.

__m128i
n 16-bit integer x 8
32-bitinteger x 4
64-bit integer x 2

Sealar vs. Vector

float a; __m1l28 a;
=
T float b; __m128 b;

=
-

NoTeanpere/™U

CPU Architecture Overview

Instructions

32K I-Cache < Branch Prediction
8 way
Decode Spicache

Micro-op Queue

4 instructions/cycle 9 macro-ops/cycle

6 ops dispatched

v v

Integer Rename

Floating Point Rename

R S A S T R I \/

Scheduler Scheduler Scheduler

Integer Physical Register File

. IR N O R B R

ABL: AGU ALU AGU ALU AGU ALU BR

—

Load/Store 32K D-Cache 1MB L2 (1+D) Cache
Queues 8 Way 8 Way

FP Register File

RS R AR

F21 MUL MUL
ST MAC ADD MAC ADD ST

What is an instruction?

Source Code:
l Compiler
Assembly Code:
mul eax, ebx
l Assembler
Machine Code:
110111 1110001

Ingtruction Set Architecture (ISA)

x86 - Desktop, PS5, Xbox
o Intel
o AMD

ARM - Mobile, Switch
o Apple Silicon

o Qualcomm Snapdragon

Application
Algorithm
Programming Language Software
Assembly Language
Machine Code

Instruction Set Architecture

Micro Architecture

Logic Gates, Registers

IC's And Transistors Hardware

Electronics And Physics

Instruction set extensions

SIMD instructions aren’t generally part of the base instruction set. Instead, they come in the
form of extensions.

o x86

o SSE

o AVX
e ARM

o NEON

Anatomy of an x86 instruetion

add eax, ebx
/I 1 N\
RS

Instruetion cyele

Fetch

Branch Prediction

!

memory. / e ——
. 4 instructions/cycle gk et 9 macro-ops/cycle
Instruction Cache

6 ops dispatched

Retrieve the next instruction(s) from

v v

Integer Rename Floating Point Rename

R R T g N .
- Decﬂde - hedul hedul hedul Scheduler Scheduler Scheduler
m - R et e W EERD (B TN | |6 = R

Integer Physical Register File FP Register File

vy ¥ ¥+ ¥ ¥ ¥ Vi IR 2R 2R 2R 2R
o T, Dl Feps

BR ST MAC ADD MAC ADD 21
Load/Store 32K D-Cache 1MB L2 (1+D) Cache
Queues 8 Way 8 Way

Decode

Interpret the instruction, breaking it down

into specific operations.

Decodere¢ /

o-o-

Branch Prediction

!

Op Cache

4 instructions/cycle

9 macro-ops/cycle

v

Integer Rename Floating Point Rename

R S A S T R I \/

Scheduler Scheduler Scheduler

Integer Physical Register File

. I T R A O R R

ALU
BR

FP Register File

RS R AR

F21 MUL MUL
ST MAC ADD MAC ADD ST

AGU ALU Al

=S

Load/Store 32K D-Cache 1MB L2 (1+D) Cache
Queues 8 Way 8 Way

ALU BR

Micro-operations (micro-ops / pops)

=

-. Decoder |:||:||:||:| C;nt.rol
nit

[:] Instructions [:] Micro-operations

https://uops.info/html-instr/IDIV_R32.html

Execute

Carry out the operations specified by the

22K Cachs < Branch Prediction
8 way
I n Stru Ctl O n . Decode Op Cache

S E o I_' Micro-op Queue 4—'
EXGCL(?‘/O!« n?lhe \ A 4 instructions/cycle :

Integer Rename Floating Point Rename
{208 208 20K 20K 20K 20K 2R
m ‘ Decode - w

\/
Scheduler Scheduler Scheduler
R (e e B KD SRe |

| | [R R S
Integer Physical Register File

. I T R A O R R

FP Register File

RS R AR

F21 MUL

MUL
ST MAC ADD

MAC ADD ST

i

Load/Store
Queues

g

Execute

ElER Branch Prediction
e Registers - circuits that temporarily alv]

store inputs and outputs pecode

A

Op Cache
. . . . Micro-op Queue
[] Executlon u n Its = CI rcu ltS th at A 4 instructions/cycle . 3 9 macro-ops/cycle
perform operations on data in ‘ I l | v\
re iste rS Integer Rename Floating Point Rename
g | TR T R S N R AR \/
hedul hedull hedul Scheduler Scheduler Scheduler
| [RGB (A e 10yl | | [R R S
m ‘ ‘ m Integer Physical Register File FP Register File

. IR N O R B R RS R AR

F21 MUL MUL
ST MAC ADD ADD ST

MAC

g

Load/Store
Queues

Registers

A register is a super fast storage location
inside the CPU. It's like a workspace for
the CPU that temporarily hold data for
processing.

add eax, ebx

Register renaming

On Intel 8086 logical registers mapped
directly to physical registers.

Modern CPUs have hundreds of physical add eax, be

registers and use register renaming. , \

logical register logical register
name name

Register names

Different logical register names can
be used to access different parts of
a register.

| Jax.

Execution units

Specialized components for executing
different types of operations.

Arithmetic logic unit (ALU)
Address generation unit (AGU)
Load-store unit (LSU)

Branch execution unit (BEU)

Execution units

Integer Physical Register File
(180 Registers)

Scheduler

(97 entries)

Unified Reservation Station (RS)

Vector Physical Register File
(168 Registers)

[Port0 |

[Port1 |

HOP

HOP

| Port5 |

| Port6 |

| Port2 |

HOP

HOP

HOP

[Port3 |
HOP

| Port4 |
HOP

| Port7 |
HOP

INT ALU

INT ALU

INT ALU

INT ALU

AGU

AGU | StoreData | | AGU

INT DIV

INT MUL

Vect Shuffle

Branch

Load Data

Load Data

INT Vect ALU

INT Vect ALU

INT Vect ALU

INT Vect MUL

INT Vect MUL

LEA

FP FMA

FP FMA

AES

Bit Scan

Vect String

FP DIV

Branch

256bit/cycle

EUs

Where is the SIMD hardware?

Floating point path = SIMD path

Old Intel CPUs used to have a floating
point coprocessor for which they
designed an extension called x87.

Modern compilers will generate SSE
instructions for scalar floating point
operations*, though x87 is still
supported.

32K I-Cache
8 way

:

Decode

| TR RS A S O R

4 instructions/cycle

Micro-op Queue

6 ops dispatched

Branch Prediction

!

Op Cache

9 macro-ops/cycle

v

Integer Rename

CIMD hardware =

R |
L2NR 2R |
ALy AGU ALU

BR

I__.;

dil

sical Register File

R

AGU ALU AGU ALU BR

s

v

Floating Point Rename

\/

Scheduler Scheduler

FP Register File

RS R AR

F21 MUL MUL
ST MAC ADD MAC ADD ST

1MB L2 (1+D) Cache
8 Way

Wide hardware

While components that handle scalar
integer instructions are typically 64-bit
wide, hardware that handles SIMD
instructions is 256-bit (or even 512-bit)
wide on modern CPUs.

32K I-Cache &

8 way

:

Decode

| TR RS A S O R

4 instructions/cycle

Micro-op Queue

6 ops dispatched

Branch Prediction

!

Op Cache

9 macro-ops/cycle

v

Integer Rename

sical Register File

CIMD hardware =

¥

ALU
BR

. T R, N O

AGU ALU AGU ALU AGU
oad/Store

dil

¥

ALU BR

v

Floating Point Rename

\/

Scheduler Scheduler

FP Register File

RS R AR

F21 MUL MUL
ST MAC ADD MAC ADD ST

1MB L2 (1+D) Cache
8 Way

CPU Architecture Overview

Instructions

32K I-Cache < Branch Prediction
8 way
Decode Spicache

Micro-op Queue

4 instructions/cycle 9 macro-ops/cycle

6 ops dispatched

v v

Integer Rename

Floating Point Rename

R S A S T R I \/

Scheduler Scheduler Scheduler

Integer Physical Register File

. IR N O R B R

ABL: AGU ALU AGU ALU AGU ALU BR

—

Load/Store 32K D-Cache 1MB L2 (1+D) Cache
Queues 8 Way 8 Way

FP Register File

RS R AR

F21 MUL MUL
ST MAC ADD MAC ADD ST

Performance

1. Number of instructions

a. Algorithmic complexity

b. Waste

. . Instructions
2. Speed at which instructions go
through the CPU

a. Data locality

b. Multi-threading

c. SIMD

How does SIMD make my

code faster? = =

Decode Op Cache

e F[aster execution - do more
useful. Work at the Sa me time by 4 instructions/cycle e 9 macro-ops/cycle
utilizing vector hardware.

v v

. Integer Rename Floating Point Rename
e Reduced cost of decoding - only S R S TS R R NG '
One instruction to decode instead SlchedulerI Slchedulerl SIcheduIerI Slchedulerl 'Sche:uler I I Scheldu|er I
Of m u lti p le . Integer Physical Register File FP Register File
TR e N N O B L 200 20 20 2R 2
P Maximizes Cache bandwidth _ :L: AGU || AW Aiu AW | AGU || AW BR F52T| m:é ADD mxé ADD ST
load more data from memory per Load/Store 32K D-Cache 1MB L2 (1+D) Cache

Queues 8 Way 8 Way

cycle.

Auto-vectorization

If certain criteria are met, a compiler
may be able to vectorize your code.

Free optimization? Yes, but compilers
usually need some help to be able to
auto-vectorize.

Compilers

. Principles, Techniques, and Tools

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

| 878 234 o7 wes 2o | SESRTEETN

Auto-vectorization

1. Loop vectorizer unrolls loops and
writes them as SIMD

2. Block vectorizer (a.k.a. SLP) merges
multiple scalars into a vector in a

block of code

Normal loop:

(
{

}

i=0;i<1024;i++)

ali] =i

Unrolled loop:

(

i=0;i<2b6;i+=4)
ali] =1;
ali+ 1] =i+ 1;
ali+2]=i+2;
ali+ 3] =i+ 3;

https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/31848-compilerautovectorizationguide.pdf

.

A

Back to demo

NoTtanperg/MU

Llearn More

Articles:

Talks:

Courses:

Books:

http://const.me/articles/simd/simd.pdf
https://mcyoung.xyz/2023/11/27/simd-base64/
https://gdcvault.com/play/1022248/SIMD-at-Insomniac-Games-How
https://www.computerenhance.com/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/
https://www.bokus.com/bok/9780128203316/computer-organization-and-design-risc-v-edition/

Glossary

ALY Instruction set architecture
Auto-vectorization Microarchitecture

AV X Register

CPU backend Register renaming

CPU frontend SIMD

Execution engine SSE

Execution unit Vector

Fetch-Decode-Execute x86

.

A

Thanks for listening!

Please fill out the feedback form!

Presen ted by 'ﬁe[]T[I.\N[IERSH

